
LLNL-JRNL-405733

Investigation of Rayleigh-Taylor turbulence and
mixing using direct numerical simulation with
experimentally-measured initial conditions. I.
Comparison to experimental data

N. Mueschke, O. Schilling

July 28, 2008

Physics of Fluids



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Investigation of Rayleigh�Taylor turbulence and mixing
using direct numerical simulation with

experimentally-measured initial conditions. I. Comparison to experimental data

Nicholas J. Mueschke�
Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843

Oleg Schillingy
Lawrence Livermore National Laboratory, Livermore, California 94550

(Dated: July 11, 2008)

A 1152 � 760 � 1280 direct numerical simulation (DNS) using initial conditions, geometry, and
physical parameters chosen to approximate those of a transitional, small Atwood number Rayleigh�
Taylor mixing experiment [Mueschke, Andrews and Schilling, J. Fluid Mech. 567, 27 (2006)] is pre-
sented. The density and velocity �uctuations measured just o¤ of the splitter plate in this buoyantly
unstable water channel experiment were parameterized to provide physically-realistic, anisotropic
initial conditions for the DNS. The methodology for parameterizing the measured data and numer-
ically implementing the resulting perturbation spectra in the simulation is discussed in detail. The
DNS model of the experiment is then validated by comparing quantities from the simulation to ex-
perimental measurements. In particular, large-scale quantities (such as the bubble front penetration
hb and and the mixing layer growth parameter �b), higher-order statistics (such as velocity variances
and the molecular mixing parameter �), and vertical velocity and density variance spectra from the
DNS are shown to be in favorable agreement with the experimental data. Di¤erences between the
quantities obtained from the DNS and from experimental measurements are related to limitations
in the dynamic range of scales resolved in the simulation and other idealizations of the simulation
model. This work demonstrates that a parameterization of experimentally-measured initial condi-
tions can yield simulation data that quantitatively agrees well with experimentally-measured low-
and higher-order statistics in a Rayleigh�Taylor mixing layer. This study also provides resolution
and initial conditions implementation requirements needed to simulate a physical Rayleigh�Taylor
mixing experiment. In Part II [Mueschke and Schilling, Phys. Fluids (2008)], other quantities not
measured in the experiment are obtained from the DNS and discussed, such as the integral- and
Taylor-scale Reynolds numbers, Reynolds stress anisotropy and two-dimensional density and ve-
locity variance spectra, hypothetical chemical product formation measures, other local and global
mixing parameters, and the statistical composition of mixed �uid.

PACS numbers: 47.20.-k, 47.20.Ma, 47.27.-i, 47.27.Cn, 47.27.E-, 47.27.ek, 47.27.wj, 47.11.Bc, 47.11.Kb

I. INTRODUCTION

Numerical simulations have emerged as a powerful
approach to understanding the detailed dynamics of
Rayleigh�Taylor instability-induced turbulence and mix-
ing. In particular, simulations have complemented ex-
periments by providing detailed data, which may not
be otherwise accurately measured. Early studies used
monotone-integrated large-eddy simulation (MILES),1�5

in which intrinsic numerical dissipation in the algorithm
provided an e¤ective dissipation at the small scales.
However, the results depended on the grid resolution,
with higher resolutions corresponding to larger numeri-
cal (rather than physical) Reynolds numbers. As a result,
molecular transport, dissipation, and di¤usion e¤ects
were not taken into account. More recently, massively-
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parallel computing has enabled well-resolved direct nu-
merical simulations (DNS) of Rayleigh�Taylor instability
and mixing.6�10 For a given kinematic viscosity and mass
di¤usivity, all of the scales can be resolved provided su¢ -
cient grid resolution. Such simulations explicitly account
for molecular dissipation and di¤usion e¤ects. Large-
eddy simulations (LES) using explicit subgrid-scale mod-
els have not been extensively applied to Rayleigh�Taylor
�ows,11�14 as the resolution requirements are nearly as
large as for DNS, and the dependence of quantities ob-
tained from the LES on the functional form and para-
meters of the subgrid-scale model is not yet fully under-
stood.

While a relatively large number of MILES of Rayleigh�
Taylor instability and mixing has been performed, there
are comparatively many fewer DNS available due to
the high resolution requirements. In addition, the vast
majority of simulations performed considered idealized
choices of simpli�ed initial conditions arising from as-
sumed spectra of interfacial (density) and/or velocity
perturbations. Speci�cally, �uids with arbitrarily cho-
sen densities, molecular dissipation and di¤usion coe¢ -
cients, and initial perturbation spectra are most often
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used in these simulations for convenience. Typically,
these studies are focused on fundamental investigations
of the mixing properties, including asymptotic-time (self-
similar) scalings of bubble and spike front penetrations,
mixing fractions, evolution of energy spectra, and other
statistics.5�8,10 An ancillary focus of many of these inves-
tigations is whether the late-time �ow properties depend
on the speci�c form of the initial conditions.10,15 Only
a few simulations to date have considered these ques-
tions using initial conditions and other simulation para-
meters relevant to physical experiments,3,4,16 although
all of these studies have used MILES. However, compro-
mises were also made in each case (with only a partial
treatment of physical parameters or initial conditions),
often dictated by limitations in the numerical algorithm
or experimental measurements.

In a broader context, the present work is motivated
by the challenge of developing a more physically-realistic
numerical model of a Rayleigh�Taylor instability exper-
iment, from which information not available from the
experimental measurements and novel insights into the
physics and modeling of such �ows, may be obtained.
In particular, the feasibility and utility of using initial
conditions measured experimentally17 to seed a miscible,
small Atwood number, turbulent Rayleigh�Taylor mixing
layer is demonstrated in this work. The method of im-
plementing experimentally-measured initial conditions is
validated by comparing various quantities from the DNS
to experimental measurements, including integral-scale
statistics, higher-order statistics, molecular mixing para-
meters, and energy spectra. This detailed comparison of
quantities provides con�dence in the simulation model,
as well as guidance for future simulations that could po-
tentially provide even better agreement with the exper-
imental data. Other quantities obtained from the DNS,
that are not readily available from experimental measure-
ments, are also interpreted in Part II.18 It is noteworthy
that all previously reported DNS of Rayleigh�Taylor mix-
ing have used a Schmidt number of unity: the present
DNS is the �rst reported simulation (DNS or LES) of
Rayleigh�Taylor instability and mixing with a Schmidt
number di¤erent from unity.

This paper is organized as follows. Previous three-
dimensional simulations of variable-density multi-mode
incompressible turbulent Rayleigh�Taylor mixing are
summarized in Sec. II, together with a brief summary of
their speci�cation of initial conditions. The methodology
for parameterizing the initial conditions from the water
channel Rayleigh�Taylor mixing experimental measure-
ments is discussed in detail in Sec. III with additional de-
tails provided in the Appendix. The numerical methods
used for the direct numerical simulation are summarized
in Sec. IV. Quantities from the DNS using the para-
meterized initial conditions are directly compared to the
corresponding quantities obtained from the experiment
in Sec. V. Finally, a summary of the principal �ndings
and conclusions are given in Sec. VI.

II. PREVIOUS THREE-DIMENSIONAL
SIMULATIONS OF MULTI-MODE

INCOMPRESSIBLE VARIABLE-DENSITY
RAYLEIGH�TAYLOR MIXING

A brief summary of previous three-dimensional simu-
lations of multi-mode miscible incompressible Rayleigh�
Taylor mixing with a discussion of initial conditions used
is presented here. Examples of initializations using fully
isotropic initial conditions are given. In addition, initial
conditions modeling used in several Rayleigh�Taylor in-
stability simulations that use information obtained from
experimental measurements or qualitative experimental
data is brie�y discussed.

A. Introductory remarks regarding initial
conditions

Many numerical simulations of Rayleigh�Taylor mix-
ing have been performed to study the growth rate of tur-
bulent mixing layers at various Atwood numbers. Much
of this work has focused on examining the late-time,
self-similar turbulent growth regime, and less e¤ort has
been given to simulations representing physical experi-
ments. As a result, most three-dimensional simulations
are initialized with small ad hoc, isotropic perturbations
to the initial interface or density �eld. Few simula-
tions have used experimentally-measured initial condi-
tions and, no direct numerical simulation of a turbulent
Rayleigh�Taylor experiment has been reported to date.
Table I lists representative pertinent multi-mode, mis-
cible Rayleigh�Taylor simulations, their numerical tech-
niques, and types of interfacial and velocity perturba-
tion initial conditions used. Previous simulations also
assumed unity Schmidt number, rather than a physical
value, as well as arbitrary values of the viscosities of the
constituent �uids.
The DNS presented here di¤ers from the other numer-

ical simulations in Table I in that the initial conditions
are taken from measured initial perturbations in both
the x- and y-directions (perpendicular to the direction
of gravity) in a Rayleigh�Taylor mixing experiment.17

No assumption of isotropy is made in the present work.
While separate interfacial perturbation spectra are ap-
plied in the x- and y-directions, the methods used here
are similar to the commonly used initialization meth-
ods with azimuthally-averaged (i.e. isotropic) energy
spectra.2,5,6,16 In wave number space, the current ini-
tialization of the interfacial perturbations limits �uctua-
tions only to those modes aligned with the x- and y-axes.
This di¤ers from isotropic initializations where azimuthal

rings of radius k =
q
k2x + k

2
y are populated with ener-

getic modes. Thus, for the mixing layer considered here,
energy that develops in wave numbers not aligned with
the x- and y-axes results from nonlinear interactions of
bubbles and spikes. Note that initial interfacial (density)
and velocity perturbations are simultaneously present in
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Numerical
technique

Interfacial
perturbation

Velocity
perturbation

Youngs1,2 MILES isotropic �
Linden et al.3 MILES isotropic �
Dalziel et al.4 MILES isotropic anisotropic (measured)

Cook and Dimotakis6

Cook and Zhou7

Cabot and Cook8
DNS isotropic �

Young et al.9 DNS isotropic �
Cook et al.13 LES isotropic �

Ristorcelli and Clark10 DNS isotropic �
Ramaprabhu and Andrews16 MILES isotropic (measured) �
Ramaprabhu and Andrews16 MILES � isotropic (measured)

Dimonte et al.5 MILES isotropic �
Cabot14 LES isotropic �

Present work DNS anisotropic (measured) anisotropic (measured)

TABLE I: Summary of previous and current three-dimensional simulations of multi-mode, miscible Rayleigh�Taylor instability
and mixing. The numerical technique (DNS: direct numerical simulation; LES: large-eddy simulation; MILES: monotone-
integrated large-eddy simulation), and the type of initial interfacial and velocity perturbations for each simulation are also
indicated.

the current DNS.

B. Idealized initial conditions

While the speci�c details regarding the initial pertur-
bation in many three-dimensional Rayleigh�Taylor sim-
ulations di¤er, a common theme unites most methodolo-
gies employed. Whether perturbations were imposed on
the density �eld, mole fraction �eld, velocity �eld, or den-
sity interface (as noted in Table I) each simulation shared
the common characteristic that the spectral content of
the perturbations was not a function of coordinate direc-
tion. An early example of isotropic initial perturbations
was reported by Youngs1 , where a random combination
of Fourier modes in all directions was used to perturb the
interface separating two �uids in a MILES.
Cook and Dimotakis6 adopted a similar approach to

Youngs, perturbing the mole fraction �eld instead of the
initial interface. The perturbation �eld was generated
as a two-dimensional �eld of random numbers (�ltered
to impose periodicity, transformed to k-space, and then
Gaussian-�ltered before transforming back to x-space).
The �lter was applied to �t the perturbations to a pre-
scribed spectrum. The density �eld was isotropic and had
broad-band perturbations in the homogeneous xy-plane.
Three cases were considered with di¤erent perturbation
spectra E�(k), but with equal perturbation energy,Z kmax

0

Z kmax

0

E�(kx; ky) dkx dky (1)

=

Z 2�

0

Z 2�

0

�(x; y)2
dxdy

(2�)
2 =

Z kmax

0

E�(k) dk :

Following a similar approach, Ristorcelli and Clark10 per-
turbed the initial concentration �eld with a prescribed

concentration spectrum, assuming a uniform distribution
of phases. Other three-dimensional simulations have also
adopted a similar process of imposing random perturba-
tion, resulting in isotropic initial conditions.

C. Approximations of simulation initial conditions
using experiments

In the salt water/fresh water Rayleigh�Taylor mix-
ing experiment of Linden and Redondo19 the amount of
mixed �uid was measured by a passive, equilibrium chem-
ical reaction between the light and heavy �uids (mixing
of acid and alkali). In the MILES3 of this experiment, the
removal of the barrier initially separating the �uids in-
duced a long-wavelength two-dimensional perturbation,
which was approximately modeled by the single-mode
perturbation �(x) = a0 cos (2�x=�), where a0 = 0:01H
or 0:02H and � = H=6 were chosen by visual compar-
isons with the experiment. No velocity perturbation was
included. An additional perturbation was superimposed
in order to break the two-dimensional symmetry of the
modeled initial conditions,

�(x; y) = �(x)|{z}
long wavelength

+ Re
N=6X

jmj;jnj=2

amn ei(kxx+kyy)| {z }
random perturbation

;

(2)
with kx = 2�m=H and ky = 2�n=H (N is the number of
grid points in each direction and H is the height of the
tank), so that the smallest wavelength was �min = 4�x
initially. The amplitudes amn were scaled such thatp
hz2i i = 0:02�min. The standard deviation of the ran-

dom perturbation was � = 0:08�x. The barrier removal
also generated small-scale turbulence modeled in some of
the simulations by increasing the standard deviation.
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A similar experiment was subsequently performed and
simulated using MILES,4 where discrepancies between
previous experimental and numerical studies were at-
tributed to an incomplete modeling of the initial con-
ditions. For these simulations, an initial velocity pertur-
bation was used to model the barrier removal. The initial
streamfunction in the simulation was

 (x; 0; z) = Ubar L
hbar
H

(3)

�
10X
n=1

an sin
�n�x
L

� sinh hn�H2L �
1� 2 jzjH

�i
sinh

�
n�H
2L

� ;

where an are the �tted Fourier coe¢ cients, Ubar is the
speed of removal of the barrier, and L is the length of the
tank. Both �idealized�and �real� initial conditions were
used. The �idealized�conditions had v(x; 0) = 0 and a
random perturbation on the interface, consisting of a sum
of Fourier modes with wavelengths in [4�x; 8�x] and
randomly chosen amplitudes having � = 0:08�x. The
�real� initial conditions included the velocity perturba-
tion, where vx(x; 0; z; t = 0) = @ =@z and vz(x; 0; z; t =
0) = �@ =@x were generated by (3) and used the same
random interfacial perturbations as in the ideal case. No
attempt was made to match any measured spectrum of
the initial experimental perturbations. Again, as was
required in the MILES of Linden et al.3 , additional ran-
dom perturbations were superimposed to break the initial
symmetry of the modeled initial conditions. Note that
the MILES3,4 had numerical Schmidt numbers of O(1),
while the salt water/fresh water experiments after which
they were modeled had molecular Schmidt numbers of
O(103).
To remove the necessity of superimposing additional

perturbations that were not measured, three-dimensional
MILES of Rayleigh�Taylor instability initialized directly
with experimental velocity and density data measured in
the water channel were performed.16 The density pertur-
bations were expressed in a form similar to Eq. (2). A
similar interfacial perturbation was used in the compar-
ative study of the predictions of di¤erent MILES codes
applied to Rayleigh�Taylor instability growth5 (where no
velocity perturbations were used). The measured ampli-
tudes of the 32 (or 16) longest modes obtained from the
Fourier amplitudes of the thermocouple-measured den-
sity �uctuations at x = 0:1 cm downstream of the edge
of the splitter plate were used for amn. To generate a two-
dimensional perturbation in k-space, the Fourier ampli-
tudes were multiplied by a two-dimensional random num-
ber �eld chosen to have a mean value of 1 and a standard
deviation of � = 0:3 in the azimuthal direction (i.e. it
was assumed that the initial conditions are statistically-
isotropic in the horizontal plane): this value of � ensured
that the azimuthally-averaged spectra used in the simula-
tions had the same energy for the included wavenumbers
as in the experiment. The velocity perturbations were

obtained from the gradient of the potential

�(x) =

mmaxX
m=mmin

nmaxX
n=nmin

amn
k
sin (kmx) sin (kny) e�kjzj

(4)
with km = 2�m=Lx, kn = 2�n=Ly, and k =

p
k2m + k

2
n.

Particle-image velocimetry measurements at x = 0:25
cm were used to obtain the velocity data, and the amn
were chosen so that the integral of velocity spectra from
the simulations and experiment agreed at this location.
Again, these MILES had a numerical Schmidt number
of O(1), while the experiments after which they were
modeled had a molecular Schmidt number of 7.

III. PARAMETERIZATION OF
EXPERIMENTAL MEASUREMENTS FOR
SIMULATION INITIAL CONDITIONS

A detailed discussion of the parameterization of the
experimentally measured initial conditions and their cur-
rent numerical implementation in the simulation code is
presented here. For reference, a description of the wa-
ter channel experiment from which the initial conditions
have been measured is given �rst. The measured den-
sity and velocity perturbations are discussed, together
with their conversion into perturbation spectra appro-
priate for use in the DNS. The relationship between the
measured and parameterized spectra is also discussed,
together with resolution issues, in the Appendix.

A. Description of the water channel experiment

A complete description of the experimental facility,
diagnostics, and measurements is available elsewhere,17

and only a brief review is provided here. The water
channel is an open-loop facility that creates an unsta-
ble strati�cation of hot and cold water. The temper-
ature di¤erence (�T � 5 �C) induces the density dif-
ference by thermal expansion of the warmer �uid. Wa-
ter from two 500 gallon tanks is pumped into the en-
trance plenum of the water channel. The two streams
are initially separated by a thin splitter plate. At
the termination of the splitter plate, an unstable strat-
i�cation of the colder �uid over the warmer �uid is
generated and a statistically-stationary Rayleigh�Taylor
instability-driven mixing layer forms downstream.20�24

The downstream distance from the splitter plate x is re-
lated to the time of instability development by Taylor�s
hypothesis25,26

x = ux t ; (5)

where ux � 4:75 cm/s is the mean velocity of each stream
entering the water channel.
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B. Density perturbation

The initial density �eld in the DNS is modeled as

�(x; t = 0) =
�1 + �2
2

+
�1 � �2
2

erf

�
z + �(x; y)

"

�
; (6)

where �1 > �2, �(x; y) is the two-dimensional initial in-
terfacial perturbation, " = 0:15 cm is the half-width of
the initially-di¤use interface separating the heavier and
lighter �uid, and erf(�) is the error function. The initial
interfacial perturbation �(x; y) is de�ned as the local ver-
tical displacement of the point at which � = (�1 + �2)=2
from the centerplane (z = 0) and has the same units as
z and ".
Perturbations to the density �eld in the x-direction

were measured in the water channel using a high-
resolution thermocouple placed on the centerplane (z =
0) a distance x = 0:5 cm downstream from the trailing
edge of the splitter plate (see Ref. 17). Temperature
measurements were converted to density using the equa-
tion of state of water. The density variance spectrum

E�(kx) =
jb�(kx)j2
4�kx

(7)

was then calculated from the Fourier amplitudes of the
density �uctuations

b�(kx) = 2

Lx

Z Lx

0

�(x)0 e�ikxx dx ; (8)

where �(x)0 is the measured density �uctuation (obtained
by subtracting the mean density from the pointwise val-
ues of the measured full density �eld), Lx = uxt is
the length of the domain in the streamwise x-direction
given by Taylor�s hypothesis (5), and �kx is the spac-
ing between wave number bins. It follows from Eq.
(7) that the density perturbation amplitude is jb�(kx)j =p
4E�(kx)�kx.
Interfacial perturbations were also measured in the

spanwise y-direction using planar laser-induced �uores-
cence (see Ref. 17). By seeding the top stream with a
�uorescing dye and aligning a laser sheet along the trail-
ing edge of the splitter plate, the interface �(y) between
the hot and cold �uids was detected. The modal am-
plitudes and interfacial perturbation variance spectrum
were determined using Eqs. (7) and (8).
Interfacial perturbation spectra from the experiment

in the x- and y-directions, b�(kx) and b�(ky) respectively,
were used to formulate

�(x; y) =

kmaxX
kx=kmin

b�(kx) eikxx + kmaxX
ky=kmin

b�(ky) eikyy (9)

in the DNS, where kx = 2�=�x and ky = 2�=�y are the
wave numbers in the x- and y-directions. The perturba-

tion amplitudes,
���b�(kx)��� and ���b�(ky)���, were taken from the
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FIG. 1: The normalized initial density perturbation spectrum
in the x-direction (top) and the normalized initial interfacial
perturbation spectrum in the y-direction (bottom) at the cen-
terplane of the mixing layer.

experimentally-measured spectra shown in Fig. 1:���b�(ki)��� =q4E�(ki)�k i (10)

(i = x; y), where E�(kx) is determined from the measured
E�(kx) spectrum by relating density perturbations to in-
terfacial perturbations (see the Appendix for details).
Phases for each mode were chosen from a uniform distri-
bution of Gaussian random values in [��; �]. The initial
conditions spectra shown in Figs. 1 and 2 are normalized
using the most unstable wavelength �� = 0:661 cm and
the corresponding most unstable wavenumber k� = 9:51
cm�1.

C. Velocity perturbation

The initial velocity �uctuations present in the mixing
layer at the onset of the instability were measured using
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FIG. 2: The normalized initial vertical velocity perturbation
spectrum in the x-direction at the centerplane of the mixing
layer.

particle-image velocimetry (see Ref. 17). An initial ve-
locity �eld based on the measured initial vertical velocity
variance spectrum at the centerplane (z = 0), shown in
Fig. 2, was then constructed. To apply the initial center-
plane vertical velocity �uctuations to the entire compu-
tational domain, a velocity �eld based on Ew(kx) must
be parameterized. This is accomplished by de�ning a
velocity potential �eld

�(x; t = 0) =

kmaxX
kx=kmin

bw(kx)
kx

(
eikxx�kxz if z � 0
eikxx+kxz if z < 0

(11)

similar to that used in the linear (small-amplitude)
analysis of Kelvin�Helmholtz and Rayleigh�Taylor
instabilities.27 Then the initial velocity �eld is the sum
of the gradient of the potential (the irrotational compo-
nent) and a term proportional to the density gradient (a
di¤usion velocity)

ui(x; t = 0) =
@�

@xi

����
t=0

� D

�

@�

@xi

����
t=0

; i = x; y; z ; (12)

where D = �=Sc is the mass di¤usivity, � is the kine-
matic viscosity, and Sc = 7 is the Schmidt number (see
Table II). The density gradient term in Eq. (12) accounts
for the velocity �eld that exists due to the initial density
gradient between the top and bottom �uids, asr � u 6= 0
when Dr� 6= 0.28,29 The maximum velocity imposed by
the initial perturbation is 0:327 cm/s [�rst term on the
right side of Eq. (12)], and the second term on the right
side of Eq. (12) has a maximum value � 1:0 � 10�5
cm/s. The initial vorticity �eld consists of a vortex sheet
aligned in the y-direction and varying in x only on the
z = 0 plane, and a density gradient contribution. Note
that �ducials showing a k�2y and k�2x spectrum are shown
in Figs. 1 and 2, respectively, for E�(ky) and Ew(kx).
For reference, simulations with initial perturbations sat-
isfying a k�2 power law were performed by Dimonte et

FIG. 3: (Color online) Initial interfacial (top) and centerplane
(z = 0) vertical velocity (bottom) perturbation isosurfaces
in the DNS. Red represents large values and blue represents
small values.

al.5 and the deuterium-tritium ice surface roughness in
inertial con�nement fusion target capsules has a similar
approximate power-law.30

A visualization of the anisotropic initial interfacial
and vertical velocity perturbations on the centerplane is
shown in Fig. 3. There are no velocity perturbations in
the y-direction. Thus, any three-dimensional structures
that develop within the turbulent mixing layer are due
to the interfacial perturbations in the y-direction. Note
the two-dimensional �roll�structure in the initial velocity
perturbations, which (by construction) are also qualita-
tively observed at very early times in the experiment (see
Fig. 6).

IV. NUMERICAL METHOD

The parameterized initial interfacial and velocity per-
turbations described in Sec. III were used in a DNS ap-
proximating the conditions of the water channel experi-
ment. The variable-density �uid equations solved, sim-
ulation parameters, simulation geometry, and boundary
conditions are described here.
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FIG. 4: (Color online) Schematic of the computational do-
main for the DNS showing the geometry and direction of
gravity. The isosurface of the initial interfacial perturbation
�(x; y) is shown on the centerplane (z = 0). In the experi-
ment, the in�ow is at x = 0, so that the x-, y-, and z-directions
correspond to the streamwise, spanwise, and cross-stream di-
rections, respectively. The coordinate directions in which ex-
perimental measurements were used are also indicated.

A. Equations describing variable-density
Rayleigh�Taylor �ow

The variable-density incompressible density and mo-
mentum equations are6

@�

@t
+

@

@xj
(� uj) = 0 ; (13)

@

@t
(� ui) +

@

@xj
(� ui uj) = � gi �

@p

@xi
+
@�ij
@xj

; (14)

where � is the density, ui is the velocity �eld, gi =
(0; 0;�g) is the gravitational �eld, p is the pressure, and
�ij = �

�
@ui=@xj + @uj=@xi � 2

3�ij@uk=@xk
�
is the vis-

cous stress tensor with dynamic viscosity � = �� and
kinematic viscosity � = (�1 + �2)=(�1 + �2). The ve-
locity divergence in �ij is retained as the �ow is not
solenoidal due to molecular mass di¤usion (D 6= 0).28,29
However, r � u is small for the small Atwood number
�ow considered here.
In the water channel experiment,17 a small tempera-

ture di¤erence was used to induce a density di¤erence be-
tween two superposed water streams. The temperature
equation is not solved in the DNS; instead, the heavy
�uid mass fraction equation in the Fickian di¤usion ap-
proximation

@

@t
(�m1) +

@

@xj
(�m1 uj) =

@

@xj

�
�D

@m1

@xj

�
(15)

is solved, where mr is the mass fraction of �uid r = 1; 2,
m1 +m2 = 1, and D is the mass di¤usivity of both �u-
ids. In the Fickian approximation, the analogy between

temperature and mass fraction is mathematically equiv-
alent under the assumption of equal species di¤usivities.
Thus, D was equated to the thermal di¤usivity of water
in order to simulate the experiment (Pr � Sc = 7).

B. Numerical methods and boundary conditions

A spectral/compact di¤erence scheme was used to
solve Eqs. (13)�(15). The code was modi�ed to use
the parameterized initial conditions discussed in Sec. III.
As the DNS does not use in�ow and out�ow boundary
conditions to represent the water streams entering and
exiting the channel at a constant velocity, Taylor�s hy-
pothesis [Eq. (5)] is used to relate the instability devel-
opment downstream in the channel to the time-evolution
in the DNS, i.e. the numerical simulation is performed
in a reference frame moving with the mean �ow velocity
in the x-direction (as in simulations of shear layers31).
Periodic boundary conditions were imposed in the x-
and y-directions (orthogonal to gravity), allowing a spec-
tral discretization with uniform grid spacing in these
directions.32 In the z-direction (parallel to gravity), free-
slip boundary conditions were imposed at the top and
bottom of the domain, and a tenth-order compact scheme
was used for the spatial discretization.33 As a result of
the di¤erence in resolving power of the spectral and com-
pact di¤erence schemes, the grid resolution in the verti-
cal direction was set to �z = 0:75�x. Further details on
resolution considerations and the implementation of the
boundary conditions can be found elsewhere.6,13

A third-order Adams�Bashforth�Moulton predictor�
corrector scheme was used to advance Eqs. (13)�(15)
in time. This two-step predictor�corrector scheme was
further decomposed in order to advance the momentum
equation, where an incompressible pressure-projection
scheme separated the advection/di¤usion and acceler-
ation/body force updates. First, the momentum �eld
without pressure gradient and body force was estimated
at time step n + 1. Next, a pressure Poisson equation
was solved to ensure mass conservation. The pressure
gradient and body force were then included to estimate
the momentum at time step n + 1, denoted (�ui)

�. Ap-
plying the corrector step to (�ui)

� yields a �nal value of
the momentum (�ui)

n+1.

C. Simulation parameters and geometry

The physical parameters in the DNS were chosen to
match a typical water channel experiment as closely as
possible, and are given in Table II. The water channel
has cross-sectional dimensions of 20 cm deep and 32 cm
high (direction of gravity). With a typical mean advec-
tive velocity ux � 4:75 cm/s and data capture times from
1�10 minutes in duration, the longest resolvable wave-
lengths in the streamwise direction are & 190 cm. How-
ever, a computational domain size of 190 cm � 20 cm
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Parameter Value

�1 0:9985986 g/cm3

�2 0:9970479 g/cm3

A 7:5� 10�4
g 981 cm/s2

�1 0:009 g/(cm s)
�2 0:011 g/(cm s)

Sc � Pr 7

TABLE II: Physical parameters used in the DNS of the water
channel experiment.

� 32 cm is not feasible due to resolution requirements
and computational resource limitations: at the grid res-
olution used in the present study, this would require a
grid consisting of Nx � Ny � Nz = 7600 � 800 � 1707
points (in actuality, the required grid size would be even
larger, as smaller grid spacings are needed to resolve the
�ow �eld that would achieve larger Reynolds numbers
than in the present study). Thus, an acceptable do-
main size must be chosen such that resolution consid-
erations could be met while also incorporating longer
wavelengths present in the experiment that may in�u-
ence the mixing layer dynamics.3,34 The chosen com-
putational domain size was Lx � Ly � Lz = 28:8 cm
� 18 cm � 24 cm, representing an interior portion of the
full channel with dimensions Lx � Ly � Lz = 190 cm
� 20 cm � 32 cm (see Fig. 4), and the grid size was
Nx � Ny � Nz = 1152 � 760 � 1280 = 1; 120; 665; 600
points. To our knowledge, this is the second largest re-
ported DNS of Rayleigh�Taylor mixing performed to date
after the simulation of Cabot and Cook,8 which achieved
a �nal grid size of 30723.
The estimated Kolmogorov scale �K � hRe

�3=4
h �

0:055 cm gives a lower bound resolution limit velocity
�eld near the end of the simulation, where the mixing
layer width is h � 15 cm and the Reynolds number based
on h is Reh � 1700. Here, the integral scale Reynolds
number is16

Reh(t) =
0:35

p
g Ah3

�
; (16)

the evolution of which is discussed further in Sec. II A
of Part II As Sc > 1, the resolution requirements for
the scalar (density) �eld are even more stringent, where
the smallest density �uctuations are given by the Batch-
elor scale �B = �KSc

�1=2 � 0:021 cm. The DNS has
�x = �y = 0:025 cm and �z = 0:01875 cm, so that the
�ow is slightly under-resolved and aliasing errors are gen-
erated as the Reynolds number increases. Such aliasing
errors (predominantly in the density �eld) were �ltered
out using a sharp spectral low-pass �lter at mode num-
ber kx = ky = 113:8 cm�1, or approximately at twice the
grid spacing. While this �ltering e¤ectively removed the
aliasing errors, a small fraction of energy (having neg-
ligible e¤ect on the mixing dynamics) was also removed
from the largest wave numbers. Additional details on the
�ltering methods can be found elsewhere.13 The simula-

tion was run to a �nal time when the mixing layer reached
h(t) = 0:62Lz. Beyond this time, the upper and lower
boundaries began to in�uence the mixing layer growth
through nonlocal pressure e¤ects, which in turn in�u-
enced velocity �uctuations outside the mixing layer.

D. Computational details

The simulations were performed using a parallel
Fortran 90 code on the Zeus computer at the Lawrence
Livermore National Laboratory; 48 nodes (384 proces-
sors) were used. Each node had eight 2:4 GHz AMD
dual-core Socket F Opteron

R

processors and 16 Gb of

memory. A total of 74 restart dumps were generated for
data analysis, totaling 6:29 Tb of data. All �elds were
stored in double precision format.

V. COMPARISONS OF QUANTITIES FROM
THE DIRECT NUMERICAL SIMULATION
WITH EXPERIMENTAL MEASUREMENTS

The DNS model of the water channel experiment is val-
idated here by comparing simulation results with avail-
able experimental measurements. Qualitative compar-
isons between the experiment and the simulated mixing
layer exhibit good agreement. Measurements of the mix-
ing layer growth parameter �b, �uctuating velocity sta-
tistics, and mixing statistics also exhibit favorable agree-
ment.

A. Statistical averaging

Statistical analysis of Rayleigh�Taylor mixing requires
averaging over an ensemble of realizations. Due to the
extreme computational requirements of DNS, it is gener-
ally impractical to perform an ensemble of well-resolved
simulations for averaging purposes. However, the simple
�ow geometry assumed in the current simulation model
implies statistical homogeneity in the x- and y-directions
(orthogonal to the direction of gravity). Thus, ensemble
averages are de�ned as the average over xy-planes,2,10 so
that the Reynolds average (denoted by an overbar) of a
�eld �(x; t) is

�(z; t) =
1

Lx Ly

Z Lx

0

Z Ly

0

�(x; t) dy dx : (17)

The instantaneous values of a given �eld can be decom-
posed into mean and �uctuating (denoted by a prime)
components according to �(x; t) = �(z; t) + �(x; t)0. As
a consequence of this averaging, the �uctuation of a �eld
averages to zero in a given plane, �0 = 0.
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B. Qualitative observations and comparisons

To facilitate comparisons between the DNS and the
experiment, time is normalized by

� =

r
g A

H
t ; (18)

where A � (�1 � �2)=(�1 + �2) = 7:5 � 10�4 is the At-
wood number, g is the acceleration, andH = 32 cm is the
vertical height of the water channel (n.b., H is not equal
to the height of the computational domain Lz). This di-
mensionless time has been adopted in order to compare
the DNS results with the experiment [the characteristic
timescale is

p
H=(gA) = 6:59 s]; however, other time

scales may be used instead. For example, the most un-
stable wavelength according to linear stability analysis35

�� � 4�
�
�2=(gA)

�1=3
= 0:66 cm can be used to nor-

malize time according to13,36 �� =
p
gA=��t. Another

time scale normalized by the growth rate of the most un-
stable wavelength !max =

p
2�gA=�� = 2:65 s�1 can

be used. Results are then characterized in terms of the
number of e-folding periods �e = !maxt. This scaling
becomes advantageous when studying transitional �ows
where, for example, approximately nine e-folding peri-
ods are required for temporal instabilities to transition
to turbulence in a boundary layer.37,38 The relationship
between these alternate time scalings and (18) are given
by ��=� = 6:96 and �e=� = 11:47 (n.b., �� and �e di¤er
only by a factor of

p
2�). Accordingly, the DNS reaches a

dimensionless time � = 1:52 or �� = 10:58 and �e = 17:4.
Thus, it may be possible to classify the �nal stages of the
DNS as �turbulent� according to the e-folding criterion
above. A more detailed discussion of the transitional and
turbulent regimes observed in the DNS is given in Part
II.
Experimental observations from the water channel ex-

periment indicate that the initial velocity perturbations
dominate the early-time growth of the mixing.17 This
was also observed in the DNS, where the initial growth
of the mixing layer was primarily two-dimensional. In
simulations with isotropic initial conditions, the initial
structures that develop from the unstable con�guration
are approximately spherical in shape.39 Each rising and
falling structure approximately obeys single-mode dy-
namics until secondary instabilities develop and nonlin-
ear dynamics begin to dominate the mixing layer.40,41

This is not the case here, where the initial growth of
the mixing layer better resembles the early-time growth
in two-dimensional simulations.14 This is clearly seen in
the early-time evolution of the f1 = 0:5 isosurface shown
in Fig. 5. Such growth is also observed in the water
channel experiments, where little spanwise structure or
variation is observed during the early-time development
of the mixing layer.
At the onset of the instability, the initial velocity

�eld forms a vortex sheet with variations only in the x-
direction. As a result, little structure exists in the span-

wise or y-direction. This is shown in Fig. 7, where at
early times (� = 0:1 and 0:43) the vorticity variance in
the x-direction (!021 ) is small with respect to that in the
y-direction (!022 ); the overbar denotes an average in the
two periodic directions and !0i = !i�!i. Spanwise struc-
ture slowly develops as baroclinic production of vorticity
in the y-direction results from the growth of the b�(ky)
perturbations [see Eq. (A.3)]. As the interpenetration
rate of the initial structures grows in magnitude, the ma-
terial surface area on the rising bubble and falling spikes
is stretched. As a result, this stretches the vortex lines
in the x-direction, increasing their strength and creating
�rib-like�structures along the cylindrical structures. Such
rib-like structures are evident by � = 0:5, as seen in Fig.
5. This nonlinear transition to a more three-dimensional
mixing layer can also be seen in the di¤erence between
the early- and late-time vorticity variance pro�les in Fig.
7. By � > 1, the vorticity �uctuations in the x- and
y-directions are approximately equal.
At � � 1, the mixing layer exhibits a more three-

dimensional �ow structure as shown by the f1 = 0:5
isosurface in Fig. 5. This nonlinear transition to a more
complex internal structure is also observed in water chan-
nel experiment at � � 1. This transition is more easily
visualized in the DNS, where the nonlinear interactions
of the stretched vortex lines contort the interface in the
direction not aligned with the x- and y-axes, as seen by
� = 1:01. During this nonlinear transition, individual
vortex lines are broken to form vortex rings, thereby cre-
ating more three-dimensional bubbles and spikes. The
bubbles and spikes appear to be closer to spherical in
morphology than cylindrical by this time.
The isosurfaces of the density �eld can be qualitatively

compared with the water channel experiment. An im-
age of the initial development of the mixing layer in a
typical experiment is shown in Fig. 6. The initial, two-
dimensional disturbance generated by the splitter plate is
evident on the left-hand side, which is similar to the ini-
tial development observed in the DNS. As the Rayleigh�
Taylor mixing layer grows, so do the perturbations in
the spanwise direction in both the DNS and in the ex-
periment. As the mixing layer continues to grow, ripples
along the top edges of the rising structures break into in-
dividual bubbles, and more three-dimensional structure
is evident at later times. This mechanism is seen in both
the water channel on the right-hand side of Fig. 6, and
in the DNS in Fig. 5.

C. Mixing layer growth

The total width of the mixing layer is typically deter-
mined by the distance between the penetration of the
bubble and spike fronts into each respective �uid.20,42

Consistent with the experiment, the bubble and spike
front penetrations are de�ned here by the f1(z; t) = 0:95
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FIG. 5: (Color online) The f1 = 0:5 volume fraction isosurface at � = 0:21 (top left), � = 0:50 (top right), � = 1:01 (bottom
left), and � = 1:52 (bottom right) from the DNS.

FIG. 6: Photograph of the initial development of a Rayleigh�
Taylor mixing layer in the water channel, where a small
amount of milk has been added to the bottom stream for
visualization purposes. The �ow is from left-to-right.

and f1(z; t) = 0:05 thresholds, respectively, where

f1(z; t) =
�(z; t)� �2
�1 � �2

(19)

is the mean volume fraction of �uid 1 at a given vertical
location z. A �rst-order validation of the DNS is given by
a comparison of the mixing layer growth and its late time
growth rate. A comparison of the bubble and spike front
widths, hb and hs, from the DNS and the water channel
experiment21 (based on the 5�95% mean volume fraction
thresholds) is shown in Fig. 8. The bubble and spike
penetrations are slightly underestimated by the DNS.
In the turbulent regime, nonlinear extensions of clas-

sical linear instability theory,41 dimensional analysis,43

bubble merger (or competition) models,34,44,45 and di-
rect numerical simulations6,8 show that the mixing layer
width (when dissipative, di¤usive, surface tension, and
other scale-similarity breaking e¤ects can be neglected)
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FIG. 7: Pro�les of the vorticity variance (in units of s�1) in each coordinate direction from the DNS at integral-scale Reynolds
numbers Reh � 10, 100, 1000, and 1710, corresponding to dimensionless times � = 0:10, 0:43, 1:16, and 1:52.

scales as

h(t) = hb(t)� hs(t) = �Ag t2 ; (20)

in the late-time self-similar regime, where � is dimen-
sionless. As hb � jhsj � h=2 at small Atwood numbers,
the self-similar growth parameter �b � �=2 can be de-
termined from

h

2
� hb = �bAg t

2 : (21)

Equation (21) is recovered for the late-time growth of
a small Atwood number mixing layer by self-similar
analysis10,41 or dimensional analysis.6 A more general ex-
pression for the self-similar growth is given by the solu-
tion of the ordinary di¤erential equation10�

dhb
dt

�2
= 4�bAg hb (22)

obtained from a self-similar analysis of the second-
moment equations. Solving Eq. (22) shows that hb is

proportional to a sum of terms that scale as tn with
n = 0; 1; and 2.
While various methods for determining a late-time

value of �b are possible, three independent measurements
are examined here. First, from Eq. (21), the late-time
slope of h=2 plotted against Agt2 is considered. While
this method is robust, it is not free from the in�uence of
the t1 and t0 terms. The second method directly com-
putes a time-dependent, e¤ective �b from the time deriv-
ative of Eq. (21) (which implicitly assumes that �b is
either a constant or varies very slowly),

�b(t) =
1

4Ag t

dh

dt
; (23)

which eliminates the t1 dependence of (21) and reduces
the t0 dependence. Finally, a time-dependent, e¤ective
�b is directly calculated from Eq. (22). The various
measures of �b are shown in Fig. 9. The DNS reached
a dimensionless time � = 1:52, which should be su¢ -
ciently late to realize self-similar growth as measured in
the water channel. Self-similar scaling of the mixing layer
width (i.e. quadratic growth) was observed for � & 1:2
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FIG. 8: Evolution of the bubble and spike front widths, hb
and hs (cm), from the DNS (solid lines) and the water channel
experiment (dashed lines).

0 20 40 60 80 100 120
0

2

4

6

8

10

12

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

FIG. 9: Evolution of the mixing layer growth parameter �b
from the DNS using the mixing layer half-width (top) and
from Eqs. (23) and (22) (bottom). A �ducial denoting �b =
0:07 is shown in the bottom �gure.

in previous water channel experiments.20 The growth pa-
rameter �b inferred from the DNS appears to approach
the experimental value �b � 0:07 for � > 1:3; however, it
is di¢ cult to conclude that �b = 0:07 is the asymptotic
value in the DNS due to the domain size constraints. The
experiments of Linden et al.3 gave �b = 0:044�0:005 and
the simulation of this experiment gave �b � 0:035. The
simulations of Dalziel et al.4 did not provide an unam-
biguous estimate of �b. The MILES of Ramaprabhu and
Andrews16 gave �b � 0:06 in reasonably good agreement
with their experimentally-measured value �b � 0:075.

D. Statistical convergence

Before a comparison of second-order velocity and den-
sity statistics is presented, an estimate of the relative
uncertainty in the statistics is required. The statis-
tical uncertainty (95% con�dence interval bounds) in
the averaged statistics may be quanti�ed by w� =

�1:96
q
s2�=N�, where s

2
� is the sample variance of the

statistic � and N� is the number of samples (i.e. tur-
bulent structures) over which the average was taken.46

Accordingly, the statistical uncertainty in a given mean
is proportional to 1=

p
N�. Thus, as the DNS evolves in

time and the turbulent length scales grow, fewer struc-
tures are available to calculate a mean value.
The dominant wavelength corresponding to a �uc-

tuating scalar �eld �(x; t)0 based on the energy
content of its spectrum E�(k; z; t) is47 ��(z; t) =

2�
R kmax
kmin

k�1E�(k; z; t)dk
hR kmax
kmin

E�(k; z; t)dk
i�1

, where

the factor of 2� results from de�ning wave numbers as
k = 2�=�. Due to the anisotropy of the implemented ini-
tial conditions, the turbulent scales of motion and statis-
tics are not generally equal in all directions. Accordingly,
the dominant wavelength in each coordinate direction

��;i(z; t) = 2�

R ki;max
ki;min

E�(ki;z;t)
ki

dkiR ki;max
ki;min

E�(ki; z; t) dki
(24)

(i = x; y) is examined separately. The evolution of the
dominant wavelengths for all three velocity components
and the density at the centerplane of the mixing layer is
shown in Fig. 10. As the Reynolds number increases, the
dominant energy-containing scales also increase in size.
In general, the velocity and density �elds yield similar
dominant wavelengths. However, due to the sustained
anisotropy resulting from the initial conditions, the dom-
inant wavelengths in the x- and y-directions remain dis-
tinct out to the �nal time � = 1:52.
The total number of turbulent structures within the

domain is de�ned here as the product

N� =

�
2Lx
��;x

��
2Ly
��;y

�
; (25)
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FIG. 10: Evolution of dominant wavelengths in the x-
direction (top) and the y-direction (bottom) (both in cm)
on the centerplane (z = 0) of the mixing layer based on each
velocity component and density from the DNS.

where two structures (one bubble and one spike) are
taken per wavelength. As the Reynolds number in-
creases, the total number of dominant, energy-containing
structures included in an ensemble average decreases.
The total number of turbulent structures, based on the
vertical velocity and density �elds is shown in Fig. 11 as a
function of the Reynolds number [Eq. (16)]. As expected
in a �ow with rising and falling buoyant structures, the
strong correlation between vertical velocity and density
�uctuations results in N� � Nw. The uncertainty in all
statistics presented scales as 1=

p
N�, and thus, oscilla-

tions in averaged quantities grow at late-time as there are
only N� � 50 structures at the �nal dimensionless time
� = 1:52. Beyond the transitional stage of the mixing
layer growth, N� � Re�1h .

101 102 103101

102

103

FIG. 11: Number of turbulent structures on the centerplane
(z = 0) of the mixing layer, Nw and N�, based on the dom-
inant wavelengths �w and �� as a function of integral-scale
Reynolds number from the DNS. A �ducial corresponding to
Re�1h is also shown.

E. Velocity variances

In addition to comparing integral-scale (i.e. large-
scale) statistics between the DNS and the experiment,
the evolution of the velocity variances on the centerplane
of the mixing layer are also compared. The centerplane
velocity variances shown in Fig. 12 agree well with the
experiment up to � � 0:5. Beyond � = 0:5, the DNS
yields lower values of w02 than measured in the experi-
ment. This is likely attributable to the �nite computa-
tional domain size, which limits the spectral dynamics of
the larger scales of motion. Anisotropy in the homoge-
neous xy-plane due to the initial conditions persists as
u02 6= v02 6= w02.
A possible explanation for the underestimation of w02

in the DNS is as follows. The nonlinear advection term
in the Navier�Stokes equation can be written in wave
number space as [F(�) denotes the Fourier transform]

F
�
@

@xj
(ui uj)

�
= i kj F(ui uj) ; (26)

where F(ui uj) =
P

k0 bui(k0)buj(k � k0).26 Accordingly,
energy is transferred from wave vectors k0 and k00 =
k � k0, which are supported on the discrete numeri-
cal grid, to wave vector k, which may or may not be
supported on the grid. This is analogous to the super-
grid, cross, or subgrid scale triadic interactions investi-
gated using �ltered data from a DNS of Rayleigh�Taylor
mixing.48 When the magnitude of the wave vector satis-
�es jkj < ��x, the triadic wave vector interaction sup-
plies energy to a scale too small to be supported on the
grid and aliasing errors are generated. If properly re-
solved, this energy transfer is negligible and numerical
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FIG. 12: Evolution of normalized vertical velocity variance (left) and horizontal velocity variances (right) on the centerplane
(z = 0) of the mixing layer from the DNS and the water channel experiment. Uncertainty estimates (95% con�dence interval
bounds) are denoted by dashed and dotted lines.
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FIG. 13: Cumulative energy distributions of the vertical velocity variance spectrum (left) and density variance spectrum (right)
on the centerplane (z = 0) of the mixing layer from the DNS at various dimensionless times.

�lters are used to eliminate the in�uence of aliasing er-
rors on the solution. At the other end of the spectrum,
if jkj > 2�=Lx or jkj > 2�=Ly, then energy from wave
vectors k0 and k00 is transferred to a wavelength too large
to be supported by the numerical domain. In this case,
the energy is lost entirely. Thus, two resolution criteria
should be satis�ed for fully-resolving a DNS of any exper-
iment: (1) the grid resolution must be �ne enough to pre-
vent the loss of energy to scales too small to be resolved,
causing aliasing errors, and; (2) the domain must be large
enough to permit creation of successively longer wave-
lengths through triadic interactions of the larger scales
of motion. Thus, the domain size must be large enough
to minimize the loss of energy to modes not supported by
the discrete grid. These criteria are loosely satis�ed with
the current domain size and are further explored below.

In order to satisfy the �rst resolution requirement, the

grid spacing must be the same size or smaller than the
smallest dynamic scale in the �ow. While this �rst re-
quirement can typically be satis�ed a priori, the second
requirement may not be for Rayleigh�Taylor mixing sim-
ulations. The large-scale resolution requirement implies
that the energy in the largest scales (low wavenumber
regime of the spectrum) must constitute only a fraction
of the total energy of the �ow. Here, the normalized
cumulative energy spectra

C�(k) =

R k
0
E�(k

0) dk0R1
0
E�(k0) dk0

(27)

are examined, which provide a measure of the cumulative
energy in the spectrum of � from mode 1 to mode m =
2�=k. If the spectrum of �uctuations for a given scalar
is fully-resolved, including the small-wavenumber peak of
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the energy spectrum, then

lim
k!0

dC�(k)

dk
� 0 : (28)

If Eq. (28) is not satis�ed, then the peak of the energy
spectrum is not fully resolved and the energy transfer to
larger scales is not negligible. The normalized cumulative
energy spectra for the vertical velocity �uctuations and
density �uctuations on the centerplane are shown in Fig.
13. At early times, � < 0:5, the slopes of Cw(k) and
C�(k) at m = 1 (i.e. k = 2�=Lx) are small. However,
beyond � � 0:5, this criterion is not satis�ed, especially
for the vertical velocity variance spectrum. Thus, the
discrepancy between the DNS and the experimentally-
measured values of w02 beyond � � 0:5 is due to the fact
that the full dynamic range of Ew(k) is not resolved.

F. One-dimensional energy spectra

The velocity variance evolution shown in Figs. 12 can
be further examined by comparing the centerplane ver-
tical velocity variance spectra at various times shown
in Fig. 14 (the spectra shown in Figs. 14 and 15 are
normalized using �� = 0:661 cm and k� = 9:51 cm�1).
Caution must be exercised when comparing experimen-
tal spectra measured using a one-dimensional ��ying-
wire�technique26 and spectra from the DNS calculated
using annular summations of energy within wave num-
ber rings. The experimentally-measured spectra contain
additional low-wave number energy content from wave
vectors not aligned with the x-axis. This spectral in-
formation cannot be distinguished or removed from the
signal in a one-dimensional measurement.26 However, it
is possible to recreate an analogous spectrum from the
two-dimensional spectrum calculated from the DNS. Be-
ginning with the two-dimensional Fourier transform of a
scalar �eld �,

b�(kx; ky) = 1

LxLy

Z Lx

0

Z Ly

0

�(x; y) e�i(kxx+kyy) dy dx ;

(29)
the energy content may be calculated by

E�(kx; ky) =

���b�(kx; ky)���2
2

: (30)

The analogous one-dimensional spectrum in the x-
direction can be calculated by adding the o¤-axis energy
content to the appropriate kx wave number,

E��(kx) =
2

�kx

�=LyX
ky=��=Ly

E�(kx; ky) : (31)

As the Reynolds number of the mixing layer increases,
a broader spectrum of velocity and density scales devel-
ops. A comparison of the one-dimensional vertical veloc-
ity variance spectra from the DNS and the water chan-
nel experiment is shown in Fig. 14. For the overlapping
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FIG. 14: Comparison of the normalized one-dimensional ver-
tical velocity variance spectra E�

w(kx) from the DNS and the
water channel experiment on the centerplane (z = 0) of the
mixing layer at � = 0:31 (top), � = 0:58 (middle), and
� = 0:92 (bottom).
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FIG. 15: Comparison of the normalized one-dimensional density variance spectrum E�
�(kx) from the DNS and the water channel

experiment on the centerplane (z = 0) of the mixing layer at � = 0:17 (top left), � = 0:4 (top right), � = 0:87 (bottom left),
and � = 1:36 (bottom right).

range of wave numbers, the DNS and the experiment ex-
hibit good agreement. The largest discrepancy is seen in
the longest wavelengths in the DNS. As shown in Fig.
13, the domain size Lx = 28:8 cm limits the resolution of
the long wavelength content in the initial vertical veloc-
ity spectrum and the energy transfer among the largest
scales. Thus, the DNS model of the experiment well-
represents the mixing layer dynamics with the exception
of the longest wavelengths, i.e. modes 1 and 2. In order
to better resolve wavelengths � � 15�30 cm, the domain
size in the x-direction must be increased four- to eight-
fold.
A similar comparison of the centerplane density vari-

ance spectrum can be made, where a similar procedure
is used to calculate a one-dimensional spectrum from the
DNS. The comparison of E��(kx) from the DNS and the
experiment is shown in Fig. 15. Again, the longest
wavelengths in the DNS exhibit less energy than the
experimentally-measured spectra. As shown by the cu-
mulative energy spectrum in Fig. 13, the total amount of

energy in the �rst two modes accounts for less than 5% of
the total density variance at early times (� � 1). Thus,
the inability of the DNS to fully resolve the dynamics
of the lowest two modes has little e¤ect on the value of
�02. At the latest time in the simulation (� = 1:52), the
energy de�cit in the longest wavelengths in the DNS re-
mains; however, as shown in Fig. 13, the energy content
in the �rst two modes is greater than 5% of the total
variance. Thus, to better resolve the late-time mixing
dynamics, a larger domain size in the x-direction is re-
quired.

G. Molecular mixing parameter

In addition to �uctuating velocity statistics, the degree
of molecular mixing is also compared and shows favorable
agreement between the DNS and the experiment. The
evolution of the molecular mixing parameter49 (see Ref.
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mixing layer from the DNS and the water channel experiment.
Uncertainty estimates (95% con�dence interval bounds) are
denoted by dashed lines.

17 for a complete discussion)

�(z; t) = 1� �02

(�1 � �2)
2
f1 f2

= 1� f 021
f1 f2

(32)

on the centerplane of the mixing layer is shown in Fig.
16. Both the DNS and the experiment show the same
dynamic trend of a decreasing � at early times, followed
by a slow rise to an approximately late-time asymptotic
value � � 0:55 in the experiment. Both exhibit min-
imum values � � 0:35�0:45 at similar times � � 0:5.
While the DNS exhibits a systematically lower value of
� than reported in the experiment,17 the uncertainties
in the statistical measurements from the DNS and ex-
periment overlap. The underestimation of � in the DNS
suggests that f 021 (or �02) on the centerplane is overes-
timated in the DNS relative to the experiment. At the
latest measurement time in the experiment, � � 0:6 from
the DNS.

VI. DISCUSSION AND CONCLUSIONS

A 1152�760�1280 spectral/compact di¤erence DNS of
a small Atwood number Rayleigh�Taylor driven mixing
layer using physical parameters, computational geome-
try, and initial density and velocity perturbations approx-
imating those in a hot/cold water channel experiment17

was performed to examine the physical mixing processes
in detail. As summarized in Sec. II, the present sim-
ulation di¤ers in several important ways from previous
simulations approximating experiments or from simula-
tions using idealized initial conditions. To facilitate a
comparison of DNS data to experimental measurements,
a representation of the experimental initial perturba-
tions measured just o¤ of the splitter plate separating

the water streams before they mix was used to seed
the initial conditions in the DNS. Speci�cally, the multi-
mode initial conditions measured using a combination
of thermocouples, planar laser-induced �uorescence, and
particle-image velocimetry in the experiment reported by
Mueschke et al.17 were parameterized for use in the DNS.
These initial conditions include perturbations to the ini-
tial density �eld in both the x- and y-directions and per-
turbations to the initial velocity �eld. The procedure
used to obtain and implement this parameterization was
described in Sec. III and in the Appendix.
The DNS was validated by comparing integral-scale,

turbulence, and mixing statistics with measurements
from the water channel experiment. In addition to qual-
itative comparisons between the �ow structure observed
in the DNS and experiment, the bubble front mixing
layer width hb and the self-similar growth parameter �b
were compared. The growth predicted by the DNS was
in good agreement with the experimental measurements
of the quadratic-in-time self-similar growth of hb(t) and
�b � 0:07 at the latest time achieved. MILES simula-
tions approximating Rayleigh�Taylor instability experi-
ments have predicted values of �b approximately 20%
smaller than measured experimentally.3,42

Turbulence statistics obtained from the DNS were then
compared with available data from the experiment. Esti-
mates of the dominant wavelengths in the di¤erent coor-
dinate directions, together with estimates of the number
of turbulent structures over which statistics were com-
puted, were �rst used to provide estimates of statistical
uncertainty. The velocity variances on the centerplane
of the mixing layer were compared between DNS and
experiment: while all were in good agreement for early
evolution times, the values from the simulation underesti-
mated the variances at later times. From the cumulative
energy distributions and phenomenology pertaining to
triadic nonlinear interactions between modes that are not
supported on the computational grid, this discrepancy
was attributed to the �nite domain size in the periodic
directions. Accordingly, this DNS illustrates the base cri-
teria required (both at the large and small scales) to fully
resolve a Rayleigh�Taylor mixing layer experiment. In
addition, one-dimensional vertical velocity variance and
density variance spectra were in good agreement between
the DNS and experiment for all times (for the modes sup-
ported on the computational grid). The evolution of the
molecular mixing parameter on the centerplane � quali-
tatively agreed with the experimental measurement over
the entire simulation time; while � from the DNS was
lower than measured after the transition to a more tur-
bulent state (� & 0:8), the DNS values overlapped with
the uncertainties in the measurements. At intermediate
times (0:5 < � < 1), � from the DNS was approximately
20% lower than the experimental values. However, at the
latest time measured in the experiment (� � 1:4), � � 0:6
compared to � � 0:55 from the DNS.
This work demonstrates that a parameterization of

the full experimentally-measured initial conditions can
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yield simulation data that quantitatively agrees well with
experimentally-measured low- and higher-order statis-
tics, such as mixing layer growth, molecular mixing pa-
rameters, variances, and energy spectra. Part II of this
work discusses other quantities obtained from the DNS
that are not available experimentally.

APPENDIX: INITIAL CONDITIONS
IMPLEMENTATION ISSUES

1. Relationship between initial interfacial
perturbations and density �uctuations

In developing the initial conditions formulation in Eqs.
(9) and (11), several issues arise which must be ad-
dressed. First, the initial interfacial perturbations in the
x-direction b�(kx) must be inferred from the density �uc-
tuation on the centerplane b�(kx). To accomplish this,
note that a relationship between b�(kx) and b�(kx) exists,
and relies on Eq. (6) as an adequate model for the initial
density �eld and a constant ". This parameterization as-
sumes that di¤usion occurs only in the z-direction, which
is valid for b�(k) � � = 2�=k. Also, when measuring
density �uctuations at a distance x = 0:5 cm from the
splitter plate, the hot and cold water streams have been
in contact for the same amount of time and, thus, a con-
stant " is plausible.
To relate E�(kx) to E�(kx) in the x-direction using Eq.

(6), the �uctuating density �eld on the centerplane can
be expressed as a sum of Fourier modes,

�(x; z = 0)0 = �(x; z = 0)� �1 + �2
2

(A.1)

=

kmaxX
kx=kmin

b�(kx) eikxx :
Substituting Eq. (A.1) into Eq. (6) evaluated at z = 0,

kmaxX
kx=kmin

b�(kx) eikxx = �1 � �2
2

erf

�
�(x)

"

�
; (A.2)

where the interfacial perturbation �(x; y) has been re-
stricted to the x-axis. Consequently,

�(x) = " erf�1

"
2

�1 � �2

kmaxX
kx=kmin

b�(kx) eikxx# : (A.3)

The interfacial perturbation spectrum, E�(kx), can be
computed by taking the one-dimensional Fourier trans-
form of the reconstructed interfacial perturbation �(x) in
Eq. (A.3). While this procedure is required to correctly

implement the interfacial perturbation in the x-direction,
the modeled spectrum E�(kx) is nearly identical to the
measured spectrum E�(kx).
2. Relationship between initial experimental and

simulation spectra

Another issue arises because the numerical grid of the
DNS is capable of supporting only a �nite number of
modes, where the total bandwidth is bounded by the to-
tal horizontal domain size Lx � Ly. The corresponding
minimum wave vector is kmin = (2�=Lx; 2�=Ly), and the
maximum wave vector is determined by the grid resolu-
tion (Nyquist limit) kmax = (�=�x; �=�y). In general,
the set of discrete wave numbers supported by the grid
does not match the speci�c wave numbers at which the
energy spectra are experimentally measured. Thus, a
strategy is required to map the experimentally-measured
energy values to the discrete wave numbers in the simu-
lation.
To reduce this sensitivity of the DNS results on the

choice of domain size, a novel strategy of implementing
the experimental spectra was investigated. The initial
spectra were formulated using a local integration over
individual wavepackets of the experimental spectrum,

Esim(ki) =
1

�ki

Z ki+�ki=2

ki��ki=2
Eexp(k

0
i) dk

0
i ; (A.4)

where �ki = 2�=Li. While the numerical grid resolu-
tion of the longer wavelengths remains the same, vari-
ations in the experimental spectral energy content may
be captured robustly. This local wavepacket integration
method yields more consistent results for small changes
in the domain size, as opposed to simply interpolating
energy values from the measured experimental spectra.
Further details concerning these formulations are avail-
able elsewhere.24
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